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A force-matching method is employed to optimize the parameters of the Stillinger–Weber (SW) interatomic
potential for calculation of the lattice thermal conductivity of silicon. The parameter fitting is based on
first-principles density functional calculations of the restoring forces for atomic displacements. The thermal
conductivities of bulk crystalline Si at 300–500 K estimated using nonequilibrium molecular dynamics with
the modified parameter set show excellent agreement with existing experimental data. We also briefly discuss
how the force-matching-based parameterization can provide the improved estimation of thermal conductivity, as
compared to the original SW parameter set, through analysis of phonon density of states and phonon dispersion
relations.
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I. INTRODUCTION

Thermal conductivity is an important property in many
applications including microelectronics and thermoelectrics.
In particular, the efficiency of thermoelectric devices that
convert heat energy to electricity is a direct function of thermal
conductivity;1–4 that is, a figure of merit (ZT ) value, or effi-
ciency measure, is given in terms of thermal (κ) and electrical
(σ ) conductivities, ZT = S2σT /κ , where T is the absolute
temperature and S the Seebeck coefficient.5 Over the last few
years, significant efforts have been undertaken to improve the
thermoelectric efficiency of silicon (Si)-based materials by
reducing the thermal conductivity through alloying, doping,
and nanostructuring; but further efficiency enhancement is
still necessary to compete with conventional thermodynamic
devices. In addition, with the continuous reduction of feature
size, thermal management has become an important issue in
the current and future fabrication of microelectronic devices.6

Thermal conductivity measurement of nanostructured ma-
terials and devices is still challenging because of technical
difficulties in synthesis of high-quality well-ordered nanos-
tructures as well as characterization of individual nanos-
tructural elements affecting thermal conduction and complex
geometries of real devices.7 Hence, there has been much
interest in use of theoretical and computational methods to
investigate the thermal properties of nanoscale materials and
devices. Classical molecular dynamics (MD) simulations with
empirical force fields have been widely applied to estimate
thermal conductivity of various materials and structures,
such as bulk,8,9 nanoparticles,10 and nanotubes,11 and also to
investigate how structural imperfections, such as defects,12,13

impurities,14 surfaces,15–17 and disordered alloys18 affect
lattice thermal conductivity.

Empirical force fields, such as three-body Stillinger–Weber
(SW)19 and Tersoff20 interatomic potentials, have been suc-
cessfully employed to study the structural, energetic, and me-
chanical properties of Si-based materials.21,22 However, their
description of lattice dynamics is often unsatisfactory despite
its importance in assessing thermal transport properties;23 for
instance, previous MD simulations based on original SW
and Tersoff parameters yielded significant overestimates of
Si thermal conductivity, i.e. 235.7 ± 7.5 Wm−1K−1 at 300 K

(Tersoff13) and 119 ± 40 Wm−1K−1 at 500 K (SW8), as
compared to experimental values of 130 W/mK at 300 K and
76.2 Wm−1K−1 at 500 K.24 It is likely an insurmountable task
to generate a single force field that can provide an adequate
description of all physical and chemical properties, even for
a prototypical semiconductor like Si. Therefore, it would be
necessary to at least modify existing force fields for specific
applications, such as lattice thermal conductivity calculations.

While lattice dynamics directly depend on force constants
between atoms,25 earlier studies demonstrated substantial
improvement in description of lattice dynamical properties
through modification of relevant force constants. Jian et al.26

showed that the SW potentials modified to fit the available
experimental values of bulk modulus and phonon frequencies
(particularly optical mode at the � point and transverse
acoustic mode at the X point) yielded considerably improved
phonon-dispersion relations for Si and Ge. Very recently,
Lindsay and Broido27 presented improved Tersoff and Brenner
potential parameters for phonon thermal transport in carbon
nanotubes and graphene that were optimized to better fit mea-
sured phonon frequencies and zone-center acoustic velocities.

In this paper, we use a force-matching method to optimize
the parameters of the SW empirical interatomic potential
for lattice thermal transport in Si. The SW parameters are
adjusted to obtain a better fit of density functional theory (DFT)
calculations of the lattice, restoring forces arising from local
lattice distortions. Using nonequilibrium molecular dynamics
(NEMD) with the modified SW parameters, we calculate the
thermal conductivities of bulk crystalline Si (c-Si) for different
temperatures and compare the results with those obtained with
the original parameters as well as existing experimental data.
Through comparison of calculated phonon density of states
and phonon dispersion relations to experimental observations,
we also attempt to discuss how the optimized parameter set
provides improved agreement with measured values of thermal
conductivity.

II. THEORY

A. Stillinger–Weber interatomic potential

Within the Stillinger–Weber potential (Ref. 18), the total
energy (�) is given by the sum of two- (�2) and three-body
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(�3) interactions:

�(r) =
∑

i,j (i<j )

�2(ri,rj ) +
∑

i,j,k(i<j<k)

�3(ri,rj ,rk) (1)

The two-body potential (�2) is a function only of radial
distance (r), described in terms of a combination of inverse
powers and an exponential function [Eq. (2)], and the
three-body potential possess full translational and rotational
symmetry to give a diamond structure of solid silicon, given
as the product exponential and cosine functions [Eq. (3)].

�2(rij ) =
{

εA
(
Br

−p

ij − r
−q

ij

)
exp[1/(rij − a)], rij < a

0 rij � a

(2)

�3(ri,rj ,rk) = h(rij ,rik,θijk) + h(rij ,rjk,θijk)

+h(rki,rkj ,θikj );

h(rij ,rik,θjik) = ελ exp[γ /(rij − a)

+ γ /(rik − a)](cos θjik + 1/3)2 (3)

where the subscripts ij , ik, and jik represent pairs and triplets
involving atoms i, j , and k; rij is the interatomic distance
between atoms i and j (normalized by a characteristic length
σ ); and θijk is the angle between bonds ij and ik.

In the original study, the seven parameters (A, B, p, q, a,
λ, and γ ) were adjusted to give a diamond lattice structure in
the solid state and fit molecular dynamics simulation results to
experimental observations for melting temperature and liquid
structure. In addition, the values of σ and ε were chosen to
match the observed lattice constant and atomization energy of
crystalline Si at 0 K, respectively. Although the SW potential
overall gives a fairly realistic description of crystalline Si, as
stated earlier, the thermal conductivities calculated based on
the original SW parameters18 tend to be overestimated. Since
lattice dynamics directly depend on force constants between
atoms,25 this implies that the original set of parameters may
describe the Si lattice as somewhat rigid, which is probably
related to the fact that the energy-scaling parameter (ε) was
fitted to the atomization energy at 0 K. Note that thermal
conduction at a finite temperature inherently involves lattice
fluctuations, e.g. the mean atomic displacement in c-Si is
about 0.077 Å at room temperature;28 such thermal-induced
lattice distortions would lead to a softening of the lattice and
consequently require smaller force constants in describing the
thermal transport properties near or above room temperature.

B. Parameter optimization using a force-matching method

To improve the description of lattice dynamics, using a
force-matching method,29 we adjusted three SW parameters
(σ , ε, and λ) to fit DFT results for both the lattice spacing and
the lattice restoring forces arising from local lattice distortions.
The values of σ were chosen to match the LDA/GGA lattice
constants for the Si diamond structure. In the SW potential, εA
and ελ determine the relative strength between the two- and
three-body interactions. Since A is preset, ε and λ were tuned
to fit the DFT restoring forces.

Our DFT calculations were performed within the local
density approximation (LDA) and the Perdew–Wang 91

TABLE I. Parameters of the Stillinger–Weber interatomic poten-
tial in Eqs. (2) and (3); original19 [SW(ORI)] and modified values
based on fit to GGA [SW(GGA)] and LDA [SW(LDA)] calculations
(this paper).

σ ε (eV) λ

SW(ORI) 2.0951 2.1683 21 A = 7.049556277
SW(GGA) 2.1051937 1.41992 29.5304 B = 0.6022245584
SW(LDA) 2.0780213 1.49662 26.4091 γ = 1.2, a = 1.8

p = 4.0, q = 0.0

generalized gradient approximation (GGA-PW91),30 using
the Vienna ab initio Simulation Package (VASP).31 We used
Vanderbilt-type ultrasoft pseudopotentials32 to represent the
interaction between ion cores and valence electrons, and a
plane-wave basis set with a kinetic energy cutoff of 160 eV.
We used a 64-atom cubic supercell and a (2 × 2 × 2) k-point
grid in the scheme of Monkhorst–Pack for the Brillouin zone
sampling. The predicted GGA (LDA) Si lattice constants are
5.4571 (5.3865) Å, which were used for MD simulations.

The DFT force data for parameter optimization were
obtained by displacing one atom in the x, y, and z directions
by 0.2 Å; the magnitude of the displacements was carefully
determined from test calculations with different values which
were greater than the mean atomic displacement of about
0.077 Å in c-Si at 300 K.28 The restoring forces acting on
the displaced atom and its four first- and 12 second-nearest
neighbors were considered to be matched in the SW parameter
adjustments. On the third-nearest neighbors and beyond, the
forces due to the center-atom displacement are negligible
(<0.01 eV/Å in the absolute value). The optimal values for
ε and λ were obtained through minimization of the cross-
validation error (ξ ); ξ 2 = 1

N

∑N
n=1 (F (n)

DFT − F
(n)
SW)2, where

F
(n)
DFT and F

(n)
SW refer to the DFT and SW forces, respectively,

of the nth of N total training data for force matching.
Table I summarizes the modified parameters based on GGA

[SW(GGA)] and LDA [SW(LDA)] calculations, together with
the original parameters [SW(ORG)] for comparison. In Fig. 1,
we compare the restoring forces from the SW and DFT
calculations; both SW(GGA) and SW(LDA) reproduce the

FIG. 1. Discrepancies between DFT and SW predictions for the
restoring forces acting on the displaced atom (center) and its four
first- (1st NNs) and 12 second-nearest neighbors (2nd NNs).
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DFT forces acting on the center atom and its neighbors well,
while SW(ORG) yields consistently overestimated values. In
the three-body SW potential, the forces can be decoupled
into two- (F) and three-body (G) contributions; that is, F =

1
3σ 2

d2�2
dr2 |r=21/6 and G = 8ελ

27σ 2r2 exp( 2r
r−a

)|r=21/6 , where σ , ε, λ,
and a are the SW parameters [see Eqs. (1)–(3)]. Looking
at the relative two- and three-body forces of SW(GGA)
and SW(LDA) with respect to SW(ORI), there is a signif-
icant reduction in the two-body forces (γF = 0.65/0.70 for
GGA/LDA), while the three-body force reduction is relatively
smaller (γG = 0.91/0.88 for GGA/LDA). The decrease of
forces indicates that SW(GGA) and SW(LDA) will describe
the Si lattice as softer than SW(ORI).

C. Nonequilibrium molecular dynamics

With the modified parameters, we performed nonequi-
librium molecular dynamics (NEMD) simulations using
LAMMPS33 to estimate the thermal conductivity of c-Si and
compared the results with those obtained with the original
parameters. Thermal conductivity (κ) is given, according to
Fourier’s law, by κ = −J/�T ; in the NEMD approach, the
temperature gradient (�T ) is obtained by imposing the heat
flux (J ) or vice versa. The temperature in an MD simulation
(TMD) is commonly calculated from the velocities of con-
stituent atoms based on the equipartition theorem of classical
statistical mechanics: 3

2NkBTMD = 1
2

∑N
i=1 mv2

i , where N is
the number of atoms in the system, kB is the Boltzmann
constant, vi is the velocity of atom i, and m is the atomic
mass. If TMD is far below the Debye temperature, quantum
corrections to the MD temperature and thermal conductivity
(κMD) are necessary; the corrected thermal conductivity is
given by κ = κMD

dTMD
dT

.34

As depicted in Fig. 2, we employed a rectangular-shaped
simulation domain with periodic boundary conditions imposed
in the x, y, and z directions, where heat conduction occurs in
the z (or 〈100〉) direction. Fixed lattice constants of 5.4571 Å
(GGA) and 5.3865 Å (LDA) along 〈100〉 were used; hereafter,
only GGA values will be reported, and corresponding LDA
values are scaled accordingly. The cross-sectional area of each
simulation domain is 3.8405 × 3.8405 nm2, while the domain
is axially divided into a number of thin shells (each of which
contains 400 atoms). The thickness of the heat source and heat
sink layers is set to LS = 5.4571 Å (corresponding to one shell
in the axial direction or 400 atoms), and the total axial length
of the rectangular domain varies from Ltot = 65.485, 87.313,

FIG. 2. Schematic illustration of a rectangular-shaped simulation
domain with periodic boundary conditions imposed in the x, y, and z

directions, where heat conduction occurs in the z (or [100]) direction.
The simulation domain is axially divided into a number of thin shells
(each of which contains 400 atoms) while having heat source (SH )
and heat sink (SC) layers, as indicated.

109.142, and 130.97, to 174.627 nm (corresponding to 120,
160, 200, 240, and 320 shells, respectively).

In the direct method, if the axial length of the simulation
domain is not sufficiently larger than the mean free path
of phonons, the phonon scattering in the heat sink and
heat source layers could inhibit thermal conduction, thereby
underestimating thermal conductivity. The finite-size effect
can be removed by extrapolating to the infinite size limit.
Note that, according to Schelling et al.,8 the relationship
between size-dependent thermal conductivity and simulation
domain length (Ltot = 2Lz, where Lz is the distance between
the heat source and heat sink centers, which is half of the
total simulation domain length) is given by: 1

κ
∝ ( 1

l∞
+ 2

Lz
),

where l∞ is the phonon mean free path for the infinite
system. We expect that the linear extrapolation approach
would work reasonably well if the simulation domain size
is sufficiently large and the system is fully equilibrated, but
cannot exclude the possibility that it may cause some errors
in estimation of bulk thermal conductivity; nonetheless, this
insignificantly affects the evaluation of the effectiveness of
potential parameter sets.

III. RESULTS AND DISCUSSION

As shown in Fig. 3, we calculated the bulk thermal
conductivities of c-Si by extrapolating calculated (1/Lz, 1/κ)
values to 1/Lz = 0. For each system, we performed 10
independent NEMD simulations with different initial velocity
distributions to obtain good statistics; the system was initially
equilibrated at a target temperature within the canonical (NVT)
ensemble with a Nosé–Hoover thermostat for 100 ps, followed
by 2000 ps of microcanonical (NVE) MD while imposing a
heat flux (with a velocity swap interval of 100 MD steps) and
measuring the ensuing temperature gradient. A time step of
1 fs was adopted for all MD simulations reported herein. Each
calculated temperature profile was obtained by averaging over
105 MD steps (100 ps) after equilibrium was reached. Those

FIG. 3. Thermal resistivity (1/κ , after quantum corrections) for
c-Si as a function of simulation cell length at three different
temperatures as indicated; for each set, the linear line indicates the
best-fit linear regression. Here, Lz is the distance between the heat
source and heat sink centers, which is half of the total simulation
domain length (Ltot; see Fig. 2). The inset summarizes the calculated
thermal conductivities of c-Si based on SW(GGA), with the available
experimental values (Refs. 24 and 36) for comparison.
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chosen conditions have been proven to be sufficient to provide
reasonable results for all cases considered.13

We calculated thermal conductivities at 500 K for three
different sets of SW parameters. Here, the relatively high
temperature ( =500 K) was intentionally chosen to check the
reliability of the modified parameter sets while minimizing
(or avoiding) the possible errors associated with quantum
corrections;35 the corrections are only on the order of ≈7% at
500 K for the experimental value ( =645 K) of the Debye tem-
perature. After quantum corrections, the calculated κ values of
82.88 ± 5.36 Wm−1K−1 and 83.84 ± 7.71 Wm−1K−1 based on
SW(GGA) and SW(LDA), respectively, are in good agreement
with the experimental value of 76.2 Wm−1K−1,24 while
SW(ORI) leads to a considerable overestimation (124.97 ±
14.02 Wm−1K−1). This result clearly demonstrates that the
modified parameter sets derived from both GGA and LDA
forces can describe reasonably well the thermal conductivity
of Si; we expect that the force-matching approach can also be
applicable to other materials. The calculated κ values (after
quantum corrections) based on SW(GGA) at 300 and 400 K
are also listed in the inset of Fig. 3. The overall good agreement
with experiment suggests that the force-matched SW potentials
would be a reliable choice for describing Si thermal transport
properties in the temperature regime.

Figure 4 shows calculated phonon density of states (DOS)
based on the modified and original parameters sets, together
with relevant experimental data for comparison. For each
case, the vibrational modes were determined by diagonalizing
a Hessian matrix obtained from numerical differentiation
of analytical forces that were calculated by displacing all
constituent atoms (in a 512-atom cubic supercell) in the x,
y, and z directions by 0.02 Å. The phonon spectrum is
composed of four branches, such as longitudinal acoustic
(LA), transverse acoustic (TA), longitudinal optical (LO),
and transverse optical (TO). The force-matched potentials
[SW(GGA) and SW(LDA)] reproduce the relative positions
of the four peaks reasonably well, as observed in earlier
experiments;37,38 on the other hand, the original parameter

FIG. 4. Phonon density of states (PDOS) calculated based on
different sets of SW parameters, as indicated; each of which
consists of four longitudinal acoustic (LA), transverse acoustic (TA),
longitudinal optical (LO), and transverse optical (TO) branches.
For comparison, the relative positions of the four phonon branches
extracted from experimental phonon-dispersion relations (Refs. 37
and 38) are also presented, as indicated.

FIG. 5. Phonon dispersion for c-Si along high-symmetry di-
rections. The SW(GGA) and SW(ORI)-based calculations were
performed using the GULP (General Utility Lattice Program)
computer program (Ref. 39). The solid and dashed lines correspond
to the modified [SW(GGA)] and original [SW(ORI)] parameter sets,
respectively. Triangles indicate experimental data from Ref. 38.

set [SW(ORI)] yields the upshifted frequencies (blue shift).
The blue shift of the phonon branches is directly related
to the increase of phonon group velocity; hence, SW(ORI)
is expected to cause overestimation of thermal conductivity,
according to the kinetic theory, κ ∝ νCvl, where v is the group
velocity of acoustic branches, Cv is the specific heat of phonons
per unit volume, and l is the mean free path of phonons.24

Finally, we compared the phonon dispersion relations
of c-Si from SW(GGA)/SW(ORI)-based calculations using
the GULP computer program.39 As shown in Fig. 5, the
most noticeable difference between the SW(GGA)- and
SW(ORI)-based dispersion curves occurs in the description
of optical branches. The SW(ORI) significantly overestimates
the optical frequencies while the SW(GGA) and experi-
mental values are in good agreement; the highest optical
frequency of 502.57/514.48 cm−1 (at �), as estimated from
the SW(GGA)/SW(LDA) calculations, is much closer to the
experimental measure38 of 518.0284 cm−1, compared to the
SW(ORI) value of 594.76 cm−1. The optical frequency over-
estimation may lead to the reduced phase space for phonon-
phonon scattering, as the three-phonon phase space tends to be
inversely related to the characteristic phonon frequency scale
determined by the highest optical frequency.40,41 As a result of
the reduction of three-phonon umklapp scattering processes,
the SW(ORI) likely causes a significant overestimation of the
thermal conductivity at room temperature and above where
phonon scattering dominates.42 The results unambiguously
suggest that the improved prediction of thermal conductivity
by the modified SW(GGA)/SW(LDA) parameter sets is largely
due to their tendency to yield a better fit to the phonon fre-
quencies, as compared to the original SW(ORI) parameter set.

IV. SUMMARY

We present optimized parameter sets for the SW interatomic
potential that provide significant improvements in estimation
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of the lattice thermal conductivity of Si, over the original SW
parameter set. Among seven SW parameters, the three most
relevant ones (σ , ε, and λ) were adjusted to obtain a better fit
of DFT (within the GGA and LDA) calculations of the lattice
spacing as well as the restoring forces for displacements of a
lattice atom in c-Si. With the modified parameter sets based
on the GGA (LDA) calculations, NEMD simulations yield
82.88 ± 5.36 (83.84 ± 7.71), 109.24 ± 6.88, and 136.65 ±
9.15 Wm−1K−1 after quantum corrections for bulk c-Si
thermal conductivities at 500, 400, and 300 K, respectively,
which are in good agreement with the respective experimental
values of 76.2, 98.9, and 148 Wm−1K−1, while the origi-
nal SW parameter set results in significantly overestimated
values (124.97 ± 14.02, 189.36 ± 15.28, and 243.99 ±
19.75 Wm−1K−1). While lattice dynamics directly depend on
the interatomic forces, we looked at the relative contributions
of the two- and three-body forces to the difference between the
modified [SW(GGA) and SW(LDA)] and original [SW(ORI)]
potentials. For SW(GGA) and SW(LDA) with respect to
SW(ORI), there is a significant reduction in the two-body
forces (γF = 0.65/0.70 for GGA/LDA), while the three-body
force reduction is relatively smaller (γG = 0.91/0.88 for
GGA/LDA). The decrease of forces clearly indicates that
SW(GGA) and SW(LDA) describe the Si lattice as softer

than SW(ORI), thereby yielding lower thermal conductivities.
In addition, our analysis of phonon density of states shows
that the modified parameter sets reproduce the relative po-
sitions of the experimental peaks reasonably well, whereas
the original parameter set gives the overall upshift in the
phonon frequencies (blue shift). Our calculation results for
phonon dispersion relations unambiguously suggest that the
improved prediction of thermal conductivity by the modified
SW(GGA)/SW(LDA) parameter sets is largely related to their
tendency to provide a better fit to the phonon frequencies, as
compared to the original SW(ORI) parameter set. Our study
demonstrates that the force-matching-based parameterization
can be a reliable choice for description of the lattice thermal
conductivity of Si-based nanostructures; we also expect that
the force-matching approach could be broadly applicable to
other materials system.
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